Nitrogen-15 NMR Chemical Shifts in Metal-Ammine Complexes. II.¹⁾ Cobalt(III) Ammine and Amine Complexes

Yoshiaki Nakashima,* Masayuki Muto,† Keiichi Kawano,†† Yoshimasa Kyogoku, ††† and Yuzo Yoshikawa††† Faculty of Education, Wakayama University, Wakayama 640 †††Institute for Protein Research, Osaka University, Suita 565 ††††Department of Chemistry, Faculty of Science, Okayama University, Okayama 700 (Received December 5, 1988)

¹⁵N nuclear magnetic resonance spectra were measured for [CoX(¹⁵NH₃]ⁿ⁺ (X=CN-, ¹⁵NH₃, H₂O, and Br⁻) and cis-[CoX₂(en-¹⁵N, ¹⁵N)₂]ⁿ⁺ (X₂=(CN⁻)₂, (NO₂⁻)₂, en-¹⁵N, ¹⁵N, ox²⁻, and (H₂O)₂; en-¹⁵N, ¹⁵N and ox²⁻ represent the ¹⁵N-enriched ethylenediamine and oxalate ion, respectively). Two sharp signals of ¹⁵N NMR were observed for [CoX(15NH₃)₅]ⁿ⁺ except for the cases of X=15NH₃ and NO₂-. The signals of 15N NMR in cis-[CoX₂(en-¹⁵N, ¹⁵N)₂]ⁿ⁺, were assigned on the basis of the selectively proton irradiated spectra at frequencies which had been already assigned to each amino proton. The chemical shifts of 15N NMR are correlated to the Co-N bond strength; it is expected that the stronger is the Co-N bond, the greater is the shift of the 15N NMR signal to a higher field. When we express $[CoX^{(15}NH_3)_5]^{n+}$ and $cis - [CoX_2(en-{}^{15}N,{}^{15}N)_2]^{n+}$ as $[CoXN_5]^{n+}$ and cis- $[CoX_2N_4]^{n^{\frac{1}{4}}}$, the effect on the ¹⁵N NMR chemical shifts by the substituent X is roughly additive.

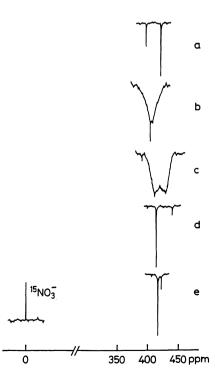
One of the authors (Y.N.) has been able to semiquantitatively explain the behaviors of the ¹H NMR chemical shifts in [CoX(NH₃)₅]ⁿ⁺ by assuming that the induced ¹H NMR chemical shifts by changing X are mainly due to a change in the magnetic anisotropy of the Co(III) ion.2-4) However, there were some descrepancies between the calculated and observed values. They were significantly large for the protons of NH3 trans to X in complexes with X=CN- and NO₂-. The chemical shift of the observed signals to higher fields than the calculated ones might be caused by increased electron densities on the trans ammine protons induced by the large inductive effects of X. The H-D exchange rates of the ammine protons were related to their acidity.⁵⁾ The trans ammine protons exchange more slowly than the cis ones with X=CNand NO₂-.5) On the other hand, though the trans ammine protons exchange faster than the cis ones with X=H₂O, Cl⁻, and Br⁻, there has been no evidence of decreased electron densities of the trans ammine protons in the ¹H NMR chemical shifts.⁴⁾ ¹H NMR chemical shifts of ammine protons are easily affected by the solvent; in contrast, though, it has been reported that the chemical shifts of the NMR signals of 15N directly bound to cobalt(III) are hardly affected by the solvent.⁶⁾ It is, therefore, expected that information concerning the Co-N bond strength and the acidity of ammine protons can be obtained from ¹⁵N NMR chemical shifts with no solvent effect.

Lehman and Fung measured the ¹⁵N NMR for $[CoX(^{15}NH_3)_5]^{n+}$ by the use of the INDOR technique, and then erroneously assigned the ¹H NMR chemical shift signals.⁷⁾ Thus, we doubted the shift directions of the 15N NMR signals since their assignments of the ¹⁵N NMR signals depended upon those of the proton signals.7) The 14N NMR signals of the same samples also measured by Herbison-Evans and Richards.⁸⁾ The signals of $[Co(H_2O)(NH_3)_5]^{3+}$ and [CoCl(NH₃)₅]²⁺ were single and the shift values were lower than that of [Co(NH₃)₆]³⁺. It was one aim of the present work to determine the correct ¹⁵N shift values of [CoX(15NH₃)₅]ⁿ⁺ relative to that of [Co-(15NH₃)₆]³⁺ by directly observing the 15N NMR signals. Furthermore, it would be interesting to find out whether the effect of substituent X2 on the chemical shifts of ¹⁵N NMR signals in cis-[CoX₂(en-¹⁵N, $^{15}N)_2$]ⁿ⁺ is additive or not.

Experimental

Materials. The $[CoX(^{15}NH_3)_5](NO_3^-)_n (X=NO_2^-, ^{15}NH_3)_n$ H_2O , and Br^-) and the cis- $[CoX_2(en^{-15}N, ^{15}N)_2]^{n+}$ $(X_2=(CN^-)_2, ^{-15}N, ^{-15}N)_2$ $(NO_2^-)_2$, en-15N,15N, ox2-, and $(H_2O)_2$) were synthesized according to the well-established methods.9) The [Co(CN)(NH₃)₅](ClO₄)₂ containing ¹⁵NH₃ was synthesized by the method of Sibert. 10) The en-15N, 15N · 2HCl and ¹⁵NH₃ were obtained from British Oxygen Co., Ltd., and their ¹⁵N contents were 98 and 99.5%, respectively. Ligands diluted 30 to 40% of 15N were used in all preparations of the complexes.

Equipments and Measurements. About 200 mg of each complex was dissolved in 1.5 ml of DMSO- d_6 in a 10-mm ϕ tube and 1000-10000 transients were accumulated for $[CoX(^{15}NH_3)_5]^{n+}$. About 100 mg was dissolved in 1.5 ml of a DCl-D2O solution (pD=2) in a 10-mm\$\phi\$ tube and 1000-10000 transients were accumulated for cis-[CoX₂(en-¹⁵N, $^{15}N)_2]^{n+}$. cis- $[Co(H_2O)_2(en^{-15}N,^{15}N)_2]^{3+}$ was dissolved in CF₃COOD. ¹⁵N NMR spectra were recorded on a JEOL PFT-100 pulsed Fourier transform NMR spectrometer operated at 10.1 MHz. Only that of [Co(en-15N,15N)₃]³⁺ (Fig. 2) was measured for a 0.1 M aqueous solution (1M=1 mol dm⁻³) on a JEOL JNM-FX60 spectrometer at 6.06 MHz (204000 repetitions). Na¹⁵NO₂ or Na¹⁵NO₃ was used as an external reference of 15N NMR signals.


[†] Present address: Seiwa Technological Laboratories

Ltd., Tokyo 174.

†† Present address: Faculty of Dentistry, Kyusyu University, Fukuoka 812.

Results

Hexaammine- and Pentaamminecobalt(III) Complexes. The 15N resonance spectra of [CoX- $(^{15}NH_3)_5]^{n+}$ (X=CN-, NO₂-, $^{15}NH_3$, H₂O, and Br-) are shown in Fig. 1. The ⁵⁹Co resonance spectra have already been measured for several Co(III) complexes.¹¹⁾ By comparing ¹⁵N and ⁵⁹Co NMR spectra, it was found that the broader is the line of the ⁵⁹Co NMR signal, the sharper is the line of ¹⁵N NMR signal of 15NH3 group directly bound to Co(III) ion. The 15N NMR signal of [Co(15NH₃)₆]³⁺ is broad and complicated. This is due to coupling between the ¹⁵N and ⁵⁹Co nuclei, resulting in the slow quadrupolar relaxation rate of the nuclear magnetic moment of ⁵⁹Co under high symmetry around the ⁵⁹Co nucleous. 12) In [CoX(15NH₃)₅]ⁿ⁺ the resonance signal of ¹⁵N trans to X was distinguished from that of the cis on the basis of their intensities. The chemical shift values are given in Table 1. We erroneously reported the shift value of [Co(15NH₃)₆]³⁺ in a previous report,¹⁾ taking the signal position of the impurity. In the present study, the central position of the broad signal was adopted as the correct shift value. 12) It can be seen from Table 1 that the 15N NMR signal of the trans $^{15}\mathrm{NH_3}$ of $[\mathrm{CoX}(^{15}\mathrm{NH_3})_5]^{n+}$ appears at a higher field from that of [Co(15NH₃)₆]³⁺ and the cis one at a lower field with X=H₂O, Cl⁻, and Br⁻. In contrast, the trans ¹⁵NH₃ with X=CN- gives an ¹⁵N signal at a lower field and a cis one at a higher field. The ¹⁵N NMR signals of [Co(NO₂)(¹⁵NH₃)₅]²⁺ were broad and not clearly separated.

 $\begin{array}{lll} Fig. \ l. & ^{15}N\ NMR\ spectra\ of\ (a)\ [Co(CN)(^{15}NH_3)_5]^{2+},\\ (b) & [Co(NO_2)(^{15}NH_3)_5]^{2+},\ (c)\ [Co(^{15}NH_3)_6]^{3+},\ (d)\\ & [Co(H_2O)(^{15}NH_3)_5]^{3+},\ and\ (e)\ [CoBr(^{15}NH_3)_5]^{2+}. \end{array}$

Table 1. 15 N NMR Shift Values in $[CoX(^{15}NH_3)_5]^{n+}$ Relative to That of $[Co(^{15}NH_3)_6]^{3+}$

X	Trans	Cis	
 CN- NO ₂ -b)	-23.9	1.7	
$NO_2^{-b)}$	-11	-16	
NH_3	$0.0^{a)}$	$0.0^{a)}$	
$ m H_2O \ Cl^{-c)}$	20.7	-5.5	
$Cl^{-c)}$	8.6	-6.2	
Br-	2.8	-3.0	

a) The shift value (418.2 ppm) of [Co(¹⁵NH₃)₆]³⁺ as a standard of ¹⁵NO₃⁻ was calculated from that as a standard of ¹⁵NO₂⁻. b) The ¹⁵N resonance signals of [Co(NO₂)(¹⁵NH₃)₅]²⁺ were not as sharp as that of the other [CoX(¹⁵NH₃)₅]ⁿ⁺ complexes as shown in Fig. 1. Therefore, the appropriate shift positions were given, which differ to some extent from those in Part I.¹⁾ c) The values are from Ref. 7. The chemical shift values were recalculated considering the difference of 6.5 ppm between the present and the literature values of [Co(¹⁵NH₃)₆]³⁺.

Table 2. 15 N NMR Shift Values in cis-[CoX₂(en- 15 N, 15 N)₂] $^{n+}$ Relative to That of [Co(en- 15 N, 15 N)₃] $^{3+}$

X_2	Trans	Cis	
 (CN-) ₂	-16.6	4.0	
$(NO_2^-)_2$	-2.8	-2.8	
èn	$0.0^{a)}$	0.0^{a}	
0x ²⁻	8.1	-8.9	
$(H_2O)_2$	9.4	-8.0	

a) The shift value (392.0 ppm) of $[Co(en-15N,15N)_3]^{3+}$ was calculated from that as a standard of $^{15}NO_2^{-}$.

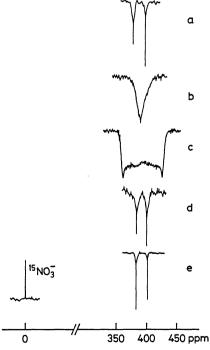


Fig. 2. ¹⁵N NMR spectra of (a) cis-[Co(CN)₂(en-¹⁵N, ¹⁵N)₂]⁺, (b) cis-[Co(NO₂)₂(en-¹⁵N, ¹⁵N)₂]⁺, (c) [Co(en-¹⁵N, ¹⁵N)₃]³⁺, (d) [Co(ox)(en-¹⁵N, ¹⁵N)₂]⁺, and (e) cis-[Co(H₂O)₂(en-¹⁵N, ¹⁵N)₂]³⁺.

Tris- and cis-Bis(ethylenediamine)cobalt(III) Complexes. The 15N NMR spectra of the cis-[CoX₂(en- $^{15}N,^{15}N)_2$ ⁿ⁺ (X₂=(CN⁻)₂, (NO₂⁻)₂, en-¹⁵N, ¹⁵N, ox²⁻, and (H₂O)₂) are shown in Fig. 2. The observed shift values are given in Table 2. The 15N NMR signal of [Co(en-15N,15N)3]3+ was very broad for the same reason as that of [Co(15NH₃)₆]³⁺.12) The central position of the signal was adopted as its chemical shift value. Each of the two 15N NMR signals of [Co(ox)(en-15N, ¹⁵N)₂]⁺ could be assigned on the basis of the spectra selectively irradiated at the resonance frequency of amino protons,^{5,13)} as shown in Fig. 3. The intensity of the 15N NMR signal in a lower field was more strongly enhanced when the amino proton signal at -5.1 ppm (-NH₂ cis to X) was irradiated, as shown in Fig. 3c. Thus, the ¹⁵N NMR signal in the lower field corresponds to that of the amino group cis to Oin $X_2=ox^2-$. Accordingly, the ¹⁵N NMR signal in the higher field should correspond to that of the amino group trans to O-; this was ascertained from selective irradiation, as shown in Fig. 3d. In contrast, the selectively proton-decoupled 15N NMR spectra of cis-[Co(CN)₂(en-¹⁵N, ¹⁵N)₂]⁺ revealed that the lower-field signal corresponds to that of the amino group trans to CN-, and the higher-field signal to the cis one. These findings were also confirmed regarding the proton spectra selectively irradiated at 15N NMR signal frequencies, based on the fact that the ¹H NMR

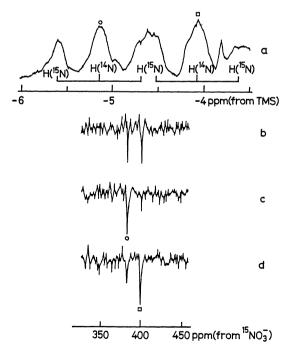


Fig. 3. (a) ¹H NMR spectrum of the amino group in [Co(ox)(en-¹⁵N,¹⁵N)₂]⁺ at 99.5 MHz, (b) Proton noise decoupled ¹⁵N NMR spectrum at 10.1 MHz, (c) ¹⁵N NMR spectrum selectively irradiated at the frequency of the amino proton cis to O⁻ (at -5.1 ppm), (d) ¹⁵N NMR spectrum selectively irradiated at the frequency of the amino proton trans to O⁻ (at -4.2 ppm).

signal in a higher field was that of the amino group cis to CN⁻ in X_2 =(CN⁻)₂.⁵,13⁻¹⁵) The ¹⁵N NMR signal for cis-[Co(NO₂)₂(en-¹⁵N,¹⁵N)₂]⁺ was not clearly separated, being broader than that in [Co(NO₂)(¹⁵NH₃)₅]²⁺, as shown in Fig. 2b.

Discussion

Generally, the magnetic shielding constant consists of three terms, as follows:

$$\sigma = \sigma_D + \sigma_P + \sigma_L, \tag{1}$$

where σ_D and σ_P are diamagnetic and paramagnetic terms, respectively, due to the electron of the observed atom; σ_L is the long-range magnetic term due to the other atoms in the molecule. Solvent effects are not considered in this equation.

Hexaammine- and Pentaamminecobalt(III) Complexes. In the present case, the chemical shift induced by the magnetic anisotropy of the Co(III) ion may be the dominant part in σ_L . As shown in Eqs. 7 and 8 of Ref. 4, the ¹⁵N NMR chemical shift induced by the Co(III) ion of ¹⁵NH₃ in [CoX(¹⁵NH₃)₅]ⁿ⁺ can be expressed relative to that of [Co(¹⁵NH₃)₆]³⁺, as follows:

$$\sigma_L = [\sigma(NH_3) - \sigma(X)]/3R^3 < r^{-3} > \text{for trans } (\theta=0)$$
 and

$$\sigma_L = -[\sigma(NH_3) - \sigma(X)]/6R^3 < r^{-3} > \text{ for cis } (\theta' = 0),$$

where parameters $\sigma(NH_3)$ and $\sigma(X)$ are the paramagnetic shielding constants of 59Co contributed by ligands NH₃ and X, respectively.^{3,4)} The relevant quantities used in the present study, except for R(adopted 2 Å as Co-N bond length¹⁷⁾), have already been presented in Refs. 3 and 4. Subtracting the calculated σ_L from the observed σ , $\sigma_D + \sigma_P$ are obtained from Eq. 1. These values are given in Table 3. The contributions of σ_L are less than about 2 ppm and $\sigma_D + \sigma_P$ plays a main role in the ¹⁵N NMR chemical shifts for $[CoX(^{15}NH_3)_5]^{n+}$, whereas σ_L does the same in the ¹H NMR chemical shifts. The ¹⁴N NMR spectra of free NH₃ and [Co(NH₃)₆]³⁺ were measured in liquid by Herbison-Evans and Richards and later by Bramley et al.^{8,18)} The chemical shift due to complex formation was to a higher field (about 50 ppm in Ref. 8 and a bout 130 ppm in Ref. 18). In their reports, the 14N NMR chemical shift was mainly caused by the

Table 3. 15 N NMR Shift Values, σ_L and $(\sigma_D + \sigma_P)$ in $[CoX(^{15}NH_3)_5]^{n+}$ Relative to That of $[Co(^{15}NH_3)_6]^{3+}$

_	$\sigma_{ m L}$		$(\sigma_{\mathrm{D}} + \sigma_{\mathrm{P}})$	
X	Trans	Cis	Trans	Cis
CN-	-2.3	1.1	-21.6	0.6
NH_3	0.0	0.0	0.0	0.0
H_2O	1.5	-0.8	19.2	-4.7
Cl-	1.2	-0.6	7.4	-5.6
Br-	1.0	-0.5	1.8	-2.5

magnetically-susceptible nonbonding paired electrons of NH₃ (σ_P). Regarding complex formation, these are constrained largely between the metal and nitrogen atoms as a bonding electron pair, and are considerably less susceptible to the magnetic field; thus, they contribute less to the nitrogen σ_P part in Ramsay's formula.¹⁶⁾ We calculated a higher shift value (70 ppm), based on the same ideas presented in Refs. 8 and 18.¹⁹⁾

The contribution of NH₃ makes the hydrogens acidic; therefore, the protons can possibly exchanged with those (deuterons) in the solution. For $[CoX(NH_3)_5]^{n+}$ complexes with X=H₂O, Cl⁻, Br⁻, or other weaker ligands than NH₃ in the spectrochemical series, it has been considered that the H-D exchange rates of the protons of NH3 trans to X are faster than that of the cis ones.^{5,21,25)} With X=CN-, the case is inverse.^{5,21)} With X=NO₂-, the ¹H NMR signal did not split to each of the trans and cis signals of NH₃. Sakaguchi et al. have speculated from plots of the an H-D exchange rates that the protons of the trans NH3 undergo an H-D exchange more slowly than that of the cis group (with X=CN- and NO₂-).⁵⁾ It could be said that the protons of NH₃ (trans or cis to X), whose ¹⁵N NMR signal shifts to a higher field than another, undergo an H-D exchange faster than those of another NH₃ in $[CoX(NH_3)_5]^{n+}$. With X=Cl⁻, the higher-field shift of the 15N NMR signal of NH3 trans to Cl⁻ corresponds to a faster H-D exchange rate of the protons. It can be seen from Table 3 that if X is a weaker ligand than 15NH3 in the spectrochemical series, the 15N NMR signal of 15NH3 trans to X shifts to a higher field from that in X=NH3 and cis signal to a lower field. Provided that the higher the magnetic field of 15N NMR signal, the faster the H-D exchange rate of ammine protons and the stronger the Co-N bond, the shift directions are consistent with the findings of the H-D exchange rate of NH₃.5,21) The lower-field shift of the 15N NMR signal of the trans $^{15}NH_3$ in $[Co(CN)(^{15}NH_3)]^{2+}$ corresponds to a decrease in the H-D exchange rate of ammine protons trans to CN-.5,21,25) In the process of the synthesis of [Co-(CN)(NH₃)₅]²⁺, ¹⁵N was introduced in the last step, as shown below:

$$\begin{split} [\text{Co(CN)}(\text{NH}_3)_4(\text{H}_2\text{O})]^{2^+} + {}^{15}\text{NH}_3 + {}^{15}\text{NH}_4\text{Cl} \rightarrow \\ [\text{Co(CN)}({}^{15}\text{NH}_3)_n(\text{NH}_3)_{5-n}]^{2^+} + \text{HCl}. \end{split}$$

The ¹H NMR signal of the last product is shown in Fig. 4. It can be seen from Fig. 4 that the NH₃ trans to CN⁻ was much more substituted by ¹⁵NH₃ than the cis. It may be considered that the lower-field shift of the ¹⁵N NMR signal, the decrease in the H-D exchange rate, and the weakened Co-N bond strength for the NH₃ trans to CN⁻ are caused by the same origin, i.e., an inductive trans effect of CN⁻. Similar phenomena have been observed by Halpern et al. in the synthesis of *trans*-[Co(¹⁵NH₃)(SO₃)(NH₃)₄]⁺, where the NH₃ trans to SO₃²⁻ was mostly substituted by

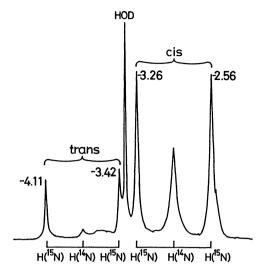


Fig. 4. ¹H NMR spectrum of $[Co(CN)(^{15}NH_3)_n-(NH_3)_{5-n}]^{2+}$ in DMSO- d_6 . Shift values are ppm from an external reference (TMS). Coupling constants, $^1J_{NH}$ are 68 and 70 Hz for trans and cis NH₃ respectively (measured at 99.5 MHz).

¹⁵NH₃, though the cis NH₃ was not. It was caused by a marked trans-labilizing influence of the S bonded sulfito ligand.²²⁾

As mentioned above, the shift direction of ¹⁵N NMR signals of trans and cis ¹⁵NH₃ in [CoX(NH₃)₅]ⁿ⁺ are correlated to the H-D exchange rates and the Co-N bond strengths, though the relation can not be quantitatively interpreted at present.

The ¹⁴N NMR signals are broad owing to a quadrupolar relaxation of ¹⁴N nucleous; the ¹⁴N NMR signals were inseparable from each of the trans and cis signals. The ¹⁵N NMR signals were separated into two sharp signals without problems related to the quadrupolar relaxation of ¹⁵N nucleous (Fig. 1), except for X=NO₂- and ¹⁵NH₃. These exceptions are due to coupling between the ¹⁵N and ⁵⁹Co nuclei. The lower-field shifts of ¹⁴N NMR signals for X=H₂O and Cl⁻ from [Co(¹⁴NH₃)₆]³⁺ in Ref. 8. represent the weighted mean values of one trans and four cis shifts of the corresponding ¹⁵N signals.

Tris- and *cis*-Bis(ethylenediamine)cobalt(III) Complexes. The ¹⁵N NMR shift value of $[Co(en^{-15}N, ^{15}N)_3]^{3+}$ was obtained from the central position of the broad signal. In *cis*- $[CoX_2(en^{-15}N, ^{15}N)_2]^{n+}$ with $X_2=ox^{2-}$, CO_3^{2-} (weaker ligands than en), the higher-field shifts of the ¹H NMR signals of the trans amino protons are consistent with the theory of anisotropy of Co(III) ion.³,¹³⁾ The assignment of the NMR signals and the H-D exchange in *cis*- $[CoX_2(en^{-15}N, ^{15}N)_2]^{n+}$ have been studied in more detail by Nakazawa et al.,¹⁴⁾ where one half of the trans aminoproton signals undergoes a large counterion-dependent shift in DMSO- d_6 ; it is therefore assigned to the trans hydrogens directed approximately parallel to the molecular two-fold axis of the complexes with $X_2=(CN^-)_2$,

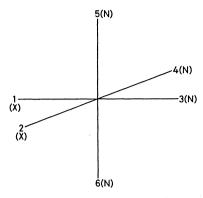


Fig. 5. Framework of cis-[CoX₂N₄]ⁿ⁺ with numbering of ligating atoms.

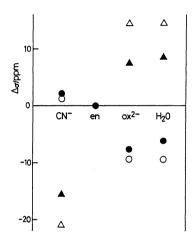


Fig. 6. Plots of ¹⁵N NMR shift values $(\sigma_D + \sigma_P)$ of $^{-15}\text{NH}_2$ in cis- $[\text{CoX}_2(\text{en}^{-15}\text{N}, ^{15}\text{N})_2]^{n+}$. Circles and triangles are for cis and trans to X, respectively (open for calculated; solid for observed (Table 4)). The calculated values are $\{(\sigma_D + \sigma_P)(\text{trans}) + (\sigma_D + \sigma_P)$ (cis) $\}$ and $\{(\sigma_D + \sigma_P)(\text{cis}) \times 2\}$ (Table 3), for trans and cis ¹⁵N to X, respectively (see text). The calculated value for the aqua complex was also used for the oxalato one.

(NO₂⁻)₂, acac⁻, ox²-, and mal²-. On the other hand, we found that upon deuteration of amino protons, the noise-decoupled NMR signal of the ¹³C adjacent to the deuterated amino nitrogen shifted by about 0.15 ppm per substituted deuteron to a higher field. ¹⁵ The lower-field signal of the ¹³C{¹H}NMR spectrum in *cis*-[Co(CN)₂(en)₂]⁺ splits at first; this has already been assigned to that of the ¹³C adjacent to the -NH₂ cis to CN⁻. ²³ Thus, the amino protons cis to CN⁻ were deuterated first, and the adjacent ¹³C NMR signal shifted to a higher field in acidified D₂O. This result is different from that found by Nakazawa et al.

Assignments of ¹⁵N NMR signals were confirmed by the selective irradiation of the ¹H NMR signals of $^{-15}$ NH₂. Accordingly, the assignments of the ¹H NMR signals of $^{-N}$ H₂ are very important for the assignment of the ¹⁵N NMR signals. The results for X_2 =(NO₂⁻)₂ and ox²⁻ were the same as those by

Table 4. ¹⁵N NMR Shift Values, σ_L and $(\sigma_D + \sigma_P)$ in cis-[CoX₂(en-¹⁵N,¹⁵N)₂]ⁿ⁺ Relative to That of [Co(en-¹⁵N,¹⁵N)₃]³⁺

	$\sigma_{ t L}$		$(\sigma_{\mathrm{D}} + \sigma_{\mathrm{P}})$	
X_2	Trans	Cis	Trans	Cis
(CN-) ₂	-1.0	1.9	-15.6	2.1
en	0.0	0.0	0.0	0.0
0x2-	0.6	-1.2	7.5	-7.7
$(H_2O)_2$	0.9	-1.8	8.5	-6.2

Nakazawa et al. and might also be similar for X_2 =acac- and mal²-.

The additivity of the effect of the substituent X on the 15N NMR chemical shifts was examined in the aforementioned $[CoXN_5]^{n+}$ and cis- $[CoX_2N_4]^{n+}$ -type complexes, as shown below. The effect is separated into two parts: trans and cis. Each can be easily obtained from experimental data for $[CoXN_5]^{n+}$ complexes. On the basis of this data, the 15N MMR shift values for cis-[CoX₂N₄]ⁿ⁺ complexes can be estimated. The framework of cis-[CoX₂N₄]ⁿ⁺ is shown with numbering of ligating atoms in Fig. 5. The trans nitrogen atoms located at positions 3 and 4 are subject to a trans effect from one X and a cis effect from another X. The cis nitrogen atoms at positions 5 and 6 are subject to only a cis effect from X at positions 1 and 2. The calculated values are shown along with the observed ones (Table 4) in Fig. 6. It seems to be roughly additive between the trans and the cis effects, thus postulated to be separately caused by ligand X on the ¹⁵N NMR chemical shifts.

References

- 1) Part I: Y. Nakashima, M. Muto, I. Takagi, and K. Kawano, Chem. Lett., 1975, 1075.
- 2) H. Yoneda and Y. Nakashima, Bull. Chem. Soc. Jpn., 47, 669 (1974).
- 3) Y. Nakashima, U. Sakaguchi, and H. Yoneda, Bull. Chem. Soc. Jpn., 48, 762 (1975).
 - 4) Y. Nakashima, Bull. Chem. Soc. Jpn., 48, 766 (1975).
- 5) U. Sakaguchi, K. Maeda, and H. Yoneda, *Bull. Chem. Soc. Jpn.*, **49**, 397 (1976).
- 6) B. M. Fung, S. C. Wei, T. H. Martin, and I-Yuan Wei, *Inorg. Chem.*, **12**, 1203 (1973).
- 7) J. W. Lehman and B. M. Fung, *Inorg. Chem.*, **11**, 214 (1972).
- 8) D. Herbison-Evans and R. E. Richards, *Mol. Phys.*, **8**, 19 (1964).
- 9) See for example, a) F. Basolo and R. K. Murman, "Inorganic Synthesis," Vol. 4, p. 171 (1953); b) "Shin Jikken Kagaku Koza," Maruzen, Tokyo (1977), Vol. 8, pp. 1249, 1252, 1251, and 1264.
- 10) H. Sibert, Z. Anorg. Allg. Chem., 327, 63 (1964).
- 11) F. Yajima, Y. Koike, A. Yamasaki, and S. Fujiwara, Bull. Chem. Soc. Jpn., 47, 1442 (1974).
- 12) A. Yamasaki, Y. Miyakoshi, M. Fujita, Y. Yoshikawa, and H. Yamatera, J. Inorg. Nucl. Chem., 41, 473 (1979).
- 13) U. Sakaguchi, S. Yamazaki, and H. Yoneda, Bull.

Chem. Soc. Jpn., 49, 402 (1976).

- 14) H. Nakazawa, U. Sakaguchi, H. Yoneda, and Y. Morimoto, Inorg. Chem., 20, 973 (1981).
- 15) Y. Nakashima, Y. Yoshikawa, F. Mitani, and K. Sasaki, J. Magn. Reson., 69, 162 (1986).
- 16) N. F. Ramsay, Phys. Rev., 78, 699 (1950).
- 17) a) M. Iwata and Y. Saito, Acta Crystallogr., Sect. B, 29, 822 (1973); b) "International Tables for X-Ray Crystallography," Kynoch Press, Birmingham (1968), Vol. III, p. 270.
- 18) R. Bramley, B. N. Figgis, and R. S. Nyholm, J. Chem. Soc. A, 1967, 861.
- 19) T. Hara and Y. Nakashima, presented at the 27th Symposium on Coordination Chemistry of the Chemical

- Society of Japan, Matsumoto, Oct., 1977, p. 207.
- 20) D. A. Buckingham, B. M. Foxman, and A. M. Sargeson, Inorg. Chem., 9, 1790 (1970).
- 21) R. Bramley, I. I. Creaser, D. J. Mackey, and A. M. Sargeson, Inorg. Chem., 17, 244 (1978).
- 22) J. Halpern, R. A. Palmer, and L. M. Blakley, J. Am. Chem. Soc., 88, 2877 (1966).
- 23) Y. Yoshikawa, Y. Masuda, H. Yamatera, S. Utsuno, and Y. Nakashima, J. Magn. Reson., 58, 473 (1984).
- 24) M. Witanowski, J. Am. Chem. Soc., 90, 5683 (1968).
- 25) D. A. Buckingham, I. I. Olsen, and A. M. Sargeson, Aust. J. Chem., 20, 597 (1967).